Combination of herbivore removal and nitrogen deposition increases upland carbon storage
نویسندگان
چکیده
Ecosystem carbon (C) accrual and storage can be enhanced by removing large herbivores as well as by the fertilizing effect of atmospheric nitrogen (N) deposition. These drivers are unlikely to operate independently, yet their combined effect on aboveground and belowground C storage remains largely unexplored. We sampled inside and outside 19 upland grazing exclosures, established for up to 80 years, across an N deposition gradient (5-24 kg N ha(-1) yr(-1) ) and found that herbivore removal increased aboveground plant C stocks, particularly in moss, shrubs and litter. Soil C storage increased with atmospheric N deposition, and this was moderated by the presence or absence of herbivores. In exclosures receiving above 11 kg N ha(-1) year(-1) , herbivore removal resulted in increased soil C stocks. This effect was typically greater for exclosures dominated by dwarf shrubs (Calluna vulgaris) than by grasses (Molinia caerulea). The same pattern was observed for ecosystem C storage. We used our data to predict C storage for a scenario of removing all large herbivores from UK heathlands. Predictions were made considering herbivore removal only (ignoring N deposition) and the combined effects of herbivore removal and current N deposition rates. Predictions including N deposition resulted in a smaller increase in UK heathland C storage than predictions using herbivore removal only. This finding was driven by the fact that the majority of UK heathlands receive low N deposition rates at which herbivore removal has little effect on C storage. Our findings demonstrate the crucial link between herbivory by large mammals and atmospheric N deposition, and this interaction needs to be considered in models of biogeochemical cycling.
منابع مشابه
Overstory vegetation influence nitrogen and dissolved organic carbon flux from the atmosphere to the forest floor: Boreal Plain, Canada
Nitrate, ammonium, total dissolved nitrogen (TDN), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and flux were measured for one year in bulk deposition and throughfall from three stand types (upland deciduous, upland conifer and wetland conifer) on the Boreal Plain, Canada. Annual (November 2006 to October 2007water year) flux rates in bulk depositionwere 80...
متن کاملNew Phytologist Herbivore - induced shifts in carbon and nitrogen allocation in red oak seedlings
• A dual-isotope, microcosm experiment was conducted with Quercus rubra (red oak) seedlings to test the hypothesis that foliar herbivory would increase belowground carbon allocation (BCA), carbon (C) rhizodeposition and nitrogen (N) uptake. Plant BCA links soil ecosystems to aboveground processes and can be affected by insect herbivores, though the extent of herbivore influences on BCA is not w...
متن کاملHydrogen Storage In Single-Walled Carbon Nanotubes Purified By Microwave Digestion Method
The aim of this study was to synthesize the single walled carbon nanotubes (SWCNTs) and determine their hydrogen storage capacities. SWCNTs were firstly synthesized by chemical vapor deposition (CVD) of acetylene (C2H2) on a magnesium oxide (MgO) powder impregnated with an iron nitrate (Fe(NO3)3·9H2O) solution. The synthesis parameters were selected as: the synthesis temperature of 800°C, the i...
متن کاملRelationships between DOC bioavailability and nitrate removal in an upland stream: An experimental approach
The Catskill Mountains of southeastern New York State have among the highest rates of atmospheric nitrogen deposition in the United States. Some streams draining Catskill catchments have shown dramatic increases in nitrate concentrations while others have maintained low nitrate concentrations. Streams in which exchange occurs between surface and subsurface (i.e. hyporheic) waters are thought to...
متن کاملDoes mycorrhizal status alter herbivore-induced changes in whole-plant resource partitioning?
Both mycorrhizae and herbivore damage cause rapid changes in source-sink dynamics within a plant. Mycorrhizae create long-term sinks for carbon within the roots while damage by leaf-chewing herbivores causes temporary whole-plant shifts in carbon and nitrogen allocation. Thus, induced responses to herbivory might depend on the presence or absence of mycorrhizae. We examined the effects of mycor...
متن کامل